"""
Plotting data points
====================

GMT shines when it comes to plotting data on a map. We can use some sample data
that is packaged with GMT to try this out. PyGMT provides access to these
datasets through the :mod:`pygmt.datasets` package. If you don't have the data
files already, they are automatically downloaded and saved to a cache directory
the first time you use them (usually ``~/.gmt/cache``).
"""

# %%
import pygmt

# %%
# For example, let's load the sample dataset of tsunami generating earthquakes
# around Japan using :func:`pygmt.datasets.load_sample_data`.
# The data are loaded as a :class:`pandas.DataFrame`.

data = pygmt.datasets.load_sample_data(name="japan_quakes")
data.head()

# %%
# Set the region for the plot to be slightly larger than the data bounds.
region = [
    data.longitude.min() - 1,
    data.longitude.max() + 1,
    data.latitude.min() - 1,
    data.latitude.max() + 1,
]
region

# %%
# We'll use the :meth:`pygmt.Figure.plot` method to plot circles on the
# earthquake epicenters.

fig = pygmt.Figure()
fig.basemap(region=region, projection="M15c", frame=True)
fig.coast(land="black", water="skyblue")
fig.plot(x=data.longitude, y=data.latitude, style="c0.3c", fill="white", pen="black")
fig.show()

# %%
# We used the style ``c0.3c`` which means "circles with a diameter of 0.3
# centimeters". The ``pen`` parameter controls the outline of the symbols and
# the ``fill`` parameter controls the fill.
#
# We can map the size of the circles to the earthquake magnitude by passing an
# array to the ``size`` parameter. Because the magnitude is on a logarithmic
# scale, it helps to show the differences by scaling the values using a power
# law.

fig = pygmt.Figure()
fig.basemap(region=region, projection="M15c", frame=True)
fig.coast(land="black", water="skyblue")
fig.plot(
    x=data.longitude,
    y=data.latitude,
    size=0.02 * (2**data.magnitude),
    style="cc",
    fill="white",
    pen="black",
)
fig.show()

# %%
# Notice that we didn't include the size in the ``style`` parameter this time,
# just the symbol ``c`` (circles) and the unit ``c`` (centimeters). So in
# this case, the size will be interpreted as being in centimeters.
#
# We can also map the colors of the markers to the depths by passing an array
# to the ``fill`` parameter and providing a colormap name (``cmap``). We can
# even use the new matplotlib colormap "viridis". Here, we first create a
# continuous colormap ranging from the minimum depth to the maximum depth of
# the earthquakes using :func:`pygmt.makecpt`, then set ``cmap=True`` in
# :meth:`pygmt.Figure.plot` to use the colormap. At the end of the plot, we
# also plot a colorbar showing the colormap used in the plot.
#

fig = pygmt.Figure()
fig.basemap(region=region, projection="M15c", frame=True)
fig.coast(land="black", water="skyblue")
pygmt.makecpt(cmap="viridis", series=[data.depth_km.min(), data.depth_km.max()])
fig.plot(
    x=data.longitude,
    y=data.latitude,
    size=0.02 * 2**data.magnitude,
    fill=data.depth_km,
    cmap=True,
    style="cc",
    pen="black",
)
fig.colorbar(frame="xaf+lDepth (km)")
fig.show()

# sphinx_gallery_thumbnail_number = 3
